COMPUTER GRAPHICS
&
IMAGE PROCESSING
MODULE 2



Module - 2(Filled Area Primitives and transformations) Filled Area Primitives- Scan line
polygon filling, Boundary filling and flood filling. Two-dimensional transformations-
Translation, Rotation, Scaling, Reflection and Shearing, Composite transformations,
Matrix representations and homogeneous coordinates. Basic 3D transformations.

NaMITHA RAMACHANDRAN



In geometry, a polygon can be defined as a flat or plane, two-dimensional closed
shape bounded with straight sides. It does not have curved sides.
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Filled Area Primitives-

Area filling algorithms often need to identify interior regions of objects.
Odd Even Rule (Odd Parity Rule)

. Construct a line segment from point to be examined to point outside of a polygon.

Count the number of intersections of line segment with polygon boundaries.

If Odd number of intersection, then Point lies inside of Polygon.

~ W N

Else, Point lies outside of polygon.

ITHA RAMACHANDRAN
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Scan line cut a vertex Is a special case ;

Consider edges intersect at a vertex, If their other endpoints are on the
same side of the scan line count number of intersections as 2( or even).

Consider edges intersect at a vertex,if their other endpoints are on the
opposite sides of the scan line count number of intersections as 1(or odd).

NaMITHA RAMACHANDRAN




Non Zero winding number Rule

Initial value of winding number=0.

Then draw a line from point (p-point to test ) to outside the polygon which does not
pass through any vertex.

Add 1 to the winding number every time we intersect a polygon edge that crosses

the line from right to left and subtract 1 every time we intersect an edge that crosses
from left to right.

The interior points are that have a non zero value for the winding number .
Exterior points are those whose value of the winding number is zero .
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Boundary Fill Algorithm starts at a pixel inside the polygon to be filled and paints the
Interior proceeding outwards towards the boundary.

This algorithm works only if the color with which the region has to be filled and the
color of the boundary of the region are different.

If the boundary is of one single color, this approach proceeds outwards pixel by pixel
until it hits the boundary of the region.

Boundary Fill Algorithm is recursive in nature. It takes an interior point(x, y), a fill
color, and a boundary color as the input. The algorithm starts by checking the color of
(X, y). If it’s color is not equal to the fill color and the boundary color, then it is
painted with the fill color and the function is called for all the neighbors of (x, y).

If a point is found to be of fill color or of boundary color, the function does not call its
neighbors and returns.

This process continues until all points up to the boundary color for the region have
been teste d NAMITHA RAMACHANDRAN



The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected
pixels.

4-connected pixels : After painting a pixel, the function is called for four neighboring
points.

These are the pixel positions that are right, left, above, and below the current pixel.
Areas filled by this method are called 4-connected.

NaMITHA RAMACHANDRAN



Boundary Fill Algorithm(4 connected approach)

void boundaryFill4(int x, int y, int fill _color,int boundary_color)
{
if(getpixel(x, y) != boundary_color &&
getpixel(x, y) != fill color)

putpixel(x, y, fill color);
boundaryFilld(x + 1, y, fill color, boundary_color);
boundaryFilld(x, y + 1, fill color, boundary_color);

)

(X, )
boundaryFilld(x - , fill color, boundary_color);

( )

boundaryFilld(x, y - 1, fill color, boundary_color);
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4 connected approach fails in such a situation
We have 8 connected approach as a solution .

Start Position

(x-1,y-1)] (x-1,y) [(x-1,y+1)

8-connected

(x,y+1)

X+1,y+1
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boundary_color &&
I= fill color)

if(getpixel(x, y)
getpixel(x, V)

putpixel(x, y, fill color);
boundaryFill8(x + 1, fill color,
boundaryFill8(x, y + fill color,
boundaryFill8(x - 1, fill color,
fill color,
fill color,
fill color,
fill color,

fill color,

boundaryFill8(x, y -
boundaryFill8(x
boundaryFill8(x
boundaryFill8(x
boundaryFill8(x

-

-

R R R R

void boundaryFill&(int x, int y, int fill _color,int boundary_color)

boundary_color);
boundary_color);
boundary_color);

boundary_color);

boundary_color);
boundary_color);
boundary_color);

boundary_color);
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Flood Fill Algorithm

In this method, a point or seed which is inside the region is selected.

This point is called a seed point.

Then four connected approaches or eight connected approaches is used to fill with a
specified color .

When boundary is of many colors and interior is to be filled with one color we use
this algorithm.

In fill algorithm, we start from a specified interior point (X, y) and reassign all pixel
values are currently set to a given interior color with the desired color.

Using either a 4-connected or 8-connected approach, we then step through pixel
positions until all interior points have been repainted.
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Procedure floodfill (x, y,fill_ color, old_color: integer)

If (getpixel (x, y)=old_color)

{

setpixel (x, y, fill_color);

fill (x+1, y, fill_color, old_color);
fill (x-1, y, fill_color, old_color);

fill (x, y+1, fill_color, old_color);

fill (x, y-1, fill_color, old_color);
4-connected pixels .

Disadvantages

Very slow algorithm

May be fail for large polygons NAMITHA RAMACHANDRAN
Initial pixel required more knowledge about surrounding pixels.



In Flood fill, all the connected pixels of a selected color get replaced by fill color.

In Boundary fill, the program stops when a given color boundary is found.

Disadvantages of Boundary-Fill over Flood-Fill:

In boundary-fill algorithms, each pixel must be compared against both the new colour
and the boundary colour. In flood-fill algorithms, each pixel need only be compared
against the new colour. Therefore flood-fill algorithms are slightly faster.

Advantages of Boundary-Fill over Flood-Fill:

All pixels in the region must be made the same colour when the region is being
created.
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Scanline Polygon filling Algorithm

Scanline filling is basically the filling up of polygons using horizontal lines or
scanlines.

This algorithm works by intersecting scanlines with polygon edges and fills the
polygon between pairs of intersections.

VM —————,
i | L r E .
ScanLine Special cases of polygon vertices:

If both lines intersecting at the vertex are on the
same side of the scanline, consider it as two
points.

If lines intersecting at the vertex are at opposite
sides of the scanline, consider it as only one
point.
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To effectively perform a polygon fill, we can store the polygon boundary in a
sorted edge table that contains all the information necessary to process the scan
lines efficiently, Each entry in the table for a particular scan line contains the
maximum Yy value for that edge, the x-intercept value ( at the lower vertex) for
the edge, and the inverse slope of the edge.

For each scan line , edges are in sorted order from left to right.

Next process the scan lines from the bottom of the polygon to its top, and
produce an active edge list for each scan line crossing the polygon boundaries.
The active edge list for a scan line contains all edges crossed by that scan line,
with iterative coherence calculations used to obtain the edge intersections.
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Step 1 — Find out the Ymin and Ymax t!)m the given polygon.

Step 2 — ScanLine intersects with each edge of the polygon from Ymin to Ymax.
Name each intersection point of the polygon.

Example : consider previous figure ,intersections are named as p0,p1,p2,p3

Step 3 — Sort the intersection point in the increasing order of X coordinate
i.e. (p0,p1) ,(p1,p2) ,(p2,p3).
Step 4 — Fill all those pair of coordinates that are inside polygons and ignore the
alternate pairs.
{ignore (p1,p2) }

NaMITHA RAMACHANDRAN






Scanline Y’

IR ntersection points : _
A,B,C Where B is a vertex and other ends of the 2 lines
causes vertex B are on the same side of scan line, so
take B two times .

G Scanliney

Pairs (A,B) ,(B,C)

Scan lineY

Intersection points :

D,E,F,G, Where E is a vertex and other ends of the 2
lines causes vertex E are on opposite side of scan line,
so take E once .

Pairs (D,E) ,(F,G)
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Coherence Properties

Coherence is simply that the properties of one part of a scene are related in some way
to other parts of the scene so that the relationship can be used to reduce processing.

Slop of this polygon boundary can be expressed in terms of the scan line intersection coordinates :

m=(yk+1-yk)

(xk+1-xKk)

Where , yk+1-yk=1
m = 1/(xk+1-xKk)

(xk+1-xk)=1/m
Xk+1=1/m + xk

NaMITHA RAMACHANDRAN



Adjacent scanlines are separated by a distance of 1, which means y difference is unity.
y-y'=1

Using the properties of Coherence, after completing one scan line processing, we don’t
want to start from the beginning of the next scan line, instead, we can directly calculate
the edge intersection point on the next scan line and proceed from that point .

A Y In the given diagram, after processing scan line

Y’ “y” start with “y’ 7, but here we don’t want to
start processing from the beginning of “y’ ”,
instead we can directly find coordinate of
intersection “B” using coherence property and
start from that point of scan line “y’  ,this will
reduce complexity of algorithm .
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2D Transformation

Transformation means changing some graphics into something else by
applying rules.

We can have various types of transformations such as
translation,rotation scaling, reflection, shearing, etc.

When a transformation takes place on a 2D plane, it is called 2D
transformation.
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2D Translation is the process of moving an object from one position
to another in a two-dimensional plane.

new:? Ynew)
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This translation is achieved by adding the translation coordinates
to the old coordinates of the object as-

Xnew = XoId i Tx

Ynew = Yold Yy Ty

In Matrix form, the above translation equations may be represented as-

P’=P+T

Translation Matrix
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30

25

tx=5, ty=10

30

35

(10,15)71 (15,25)
(5,5)01 (10,15)

(15,5)01 (20,15)
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2D SCALING

In computer graphics, scaling is a process of modifying or altering the
size of objects.

Scaling may be used to increase or reduce the size of the object.
Scaling subjects the coordinate points of the original object to change.
Scaling factor determines whether the object size Is to be increased or
reduced.

If scaling factor > 1, then the object size is increased.

If scaling factor < 1, then the object size is reduced.

Specifying a value of 1 for both sx and sy leaves the size of objects
unchanged .
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When Sx and Sy are assigned the same value , uniform scaling is produced that
maintains relative object proportions.

When Sx and Sy are assigned the value %2,length and distance from origin are reduced
by half.
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Initial coordinates of the object O = (X4, Y o1a)
Scaling factor for X-axis = S,

Scaling factor for Y-axis = S,
New coordinates of the object O after scaling = (X, ;s Y new)

This scaling is achieved by using the following scaling equations-

><new = ><oId X Sx YneW = Yold X Sy
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In Matrix form, the above scaling equations may be represented as-

Xiow = Xoig X Sy

new

Scaling Matrix

R 010 X Sy

new

'=S.P
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12 Old corner coordinates of the square = A (0, 3), B(3, 3), C(3, 0), D(0, 0)

Scaling factor along X axis = 2 Scaling factor along Y axis = 3
10 0,3)
X new=0 x 2=0
3 Ynew =3 x 3=9 (0,9)
(3.3)
X new=3 X 2=6
6 Ynew =3 x 3=9 (6,9)
(3,0)
& X new=3 x 2=6
Ynew =0 x 3=0 (6,0)
2
(Y
0 2 4 6 8 10 12 14 X new=0x 2=0
Ynew =0 x 3=0 (0,0)
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Old corner coordinates of the square = A (0, 0), B(6, 0), C(6, 9), D(0, 9)

Scaling factor along X axis = 1/2

1/2

10

Scaling factor along Y axis =

(0,0)

X new=0 x 0.5=0

Ynew =0 x 0.5=0 (0,0)
(6,0)

X new=6 x .5=3

Ynew =0 x .5=0 (3,0)

(6,9)
X new=6 x .5=3
Ynew =9 x .5=4.5 (3,4.5)

(0,9)
12 14 X new=0 x.5=0
Ynew =9x .5=4.5 (0,4.5)
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Old corner coordinates of the square = A (0, 0), B(6, 0), C(6, 9), D(0, 9)

Scaling factor along X axis = 1/2

1/2

10

Scaling factor along Y axis =

(0,0)

X new=0 x 0.5=0

Ynew =0 x 0.5=0 (0,0)
(6,0)

X new=6 x .5=3

Ynew =0 x .5=0 (3,0)

(6,9)
X new=6 x .5=3
Ynew =9 x .5=4.5 (3,4.5)

(0,9)
12 14 X new=0 x.5=0
Ynew =9x .5=4.5 (0,4.5)
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Fixed point scaling :

We can control the location of a scaled object by choosing a position, called
the fixed point.

Example
Scalewrt(2,1)

For a vertex with coordinates (X,y) the scaled coordinates
(x’,y’) are calculated w r t fixed point (xf,yf)

x* = X.Sx +Xf(1-Sx)

y’=y.sy +yr (1-Sy)
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o0 ROTET T » Default rotation center: Origin (0,0)

2D Rotation is the prog
INn a two-dimensional ¢

j \ 6> 0 : Rotate counter clockwise

w . 0<0:Rotate clockwise




v} Using standard trigonometric the original coordinate of point P X, Y can be
P'(x', y)

represented as -

=¥
—~
y
-‘%
=
=
=
=

Same way we can represent the point P X' Y’ as -

' =rcos (¢p + 0) =rcospcos@ — rsingdsinf....... (3)

y' ' =rsin (¢ + ) =rcos¢psin@ + rsingpcosf....... (4)




Substitutingequation 1 & 2 in 3 & 4 respectively, we will get
' =xcosl— ysinb

y' =z sinf + ycosb

cos(6)
sin(H)

-sin(6)
cos(6)
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This rotation is achieved by using the following rotation equations-
Xiew = Xgig X €080 — Y 4 X sin0
Y new = Xoig X 8in0 + Y4 X cosO

new

new

Rotation Matrix
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= How to rotate an object with multiple
vertices?

Rotate individual
Vertices
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Given a triangle with corner coordinates (0, 0), (1, 0) and (1, 1).
Rotate the triangle by 90 degree anticlockwise direction and find out
the new coordinates.

(0,007 (0,0) 0 cos90 - 0sin90=0
0 sin90 + 0co0s90=0

(1,000 (0,1) 1cos 90 - 0sin90=0
1sin90 + 0cos90=1

(1,10 (-1,1) 1cos 90 - 1sin90=-1
1S|n90 + 1C0890:1 NAMITHA RAMACHANDRAN



After Rotation




Homogeneous coordinates

In homogeneous coordinate system, two-dimensional coordinate
positions (X, y) are represented by triple-coordinates(x,y,1).

we can perform all transformations using matrix multiplications.
This allows us to pre-multiply all the matrices together.
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» [ranslation:

» Rotation:

s Scaling:

1

0
0

cos(0)
sin(6)
0

Sx
0
0

0
Sy 0

0

0
1
0

-sin(0)
cos(6)
0

0

1

tx
ty
1

X

X

0
K
1

=~ <




Composite Transformation

Composing Transformation — the process of applying several transformations in
succession to form one overall transformation.

Arbitrary Rotation Center
To rotate about an arbitrary point P (px,py) by

1) Translate the object so that P will coincide with the origin: T(-px, -py)
2)Rotate the object: R(0)

NaMITHA RAMACHANDRAN

3)Translate the object back: T(px,py)



Matrix multiplication is associative
M3XM2xM1l=(M3xM2)xM1=M3x(M2xM1l)

Transformation products may not be commutative A X B 1= Bx A

NaMITHA RAMACHANDRAN



(PX,py)

T(-px,-py)

R(6)

T(px,py)

pX,py
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« Put in matrix form:  T(px,py) R(®) T(-px, -py) * P

10 px cos(0) -sin(0) 0

10
01 py sin(B8)  cos(B) 0 01 -
0 0 1 00

COS © -sSIne px.(1-cose) + py.sine
Sine cose  py.(1-cose) - px.sine
0 0 1

NamMiTHA RAMACHANDRAN



Arbitrary Scaling Pivot
To scale about an arbitrary pivot point P(xf,yf):
Translate the object so that P will coincide with the origin: T(-xf, -yf)
Scale the object: S(sx, sy)
Translate the object back: T(xf,yf)
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0O sy yf

-sx.xf + xf X
-sy.yf + yf Y

1 1
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Reflection

It is a transformation that produces a mirror image of an object. The mirror image
can be either about the x-axis or y-axis. The object is rotated by180°.

Reflection about x-axis:

1 0 O
O -1 O
O 0 1

NaMITHA RAMACHANDRAN



Reflection about y-axis:

1 0 O
O 1 O
O 0 1
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Reflection about an axis perpendicular to xy plane and passing
through origin:
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Reflection about line y=x:

O 1 O
1 0 O
O 0 1
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Reflection about line y=-x:

O -1 O
=l 22500
O 0 1
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Shear

A transformation that slants the shape of an object is called the shear
transformation. There are two shear transformations X-Shear and Y-
Shear.

One shifts X coordinates values and other shifts Y coordinate values.
However; in both the cases only one coordinate changes its
coordinates and other preserves its values.

Shearing is also termed as Skewing
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X-Shear
The X-Shear preserves the Y coordinate and changes are made to X

coordinates, which causes the vertical lines to tilt right or left

x’=x+Sh, .y
y =Yy
X’ 1 shx O X
v | - 0 1 0 Y
1 0O 0 1 1

0 0

NaMITHA RAMACHANDRAN

(a) Original object (b) Object after x shear



Y-Shear
The Y-Shear preserves the X coordinates and changes the Y coordinates

L
y’=y+Sh,.Xx
X’ =x
. Lo (R X
Y = shy 1 O Y
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X Shear wrt a reference point yRef

X’ 1 shx  -shx*yref X
Y’ - 0 1 0 % Y
1 0 0 1 1
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Y Shear wrt a reference point xRef

X’ X
1 0 0

% = shy 1 -shy*xref % Y

1 0 0 1 1

NaMITHA RAMACHANDRAN



Perform 45 degree rotation of a triangle A(0,0) ,B(1,1) and C(5,3)
about the origin and about the fixed point(-1,-1).
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Show that the composition of two successive rotations are additive
R(el).R(e2)=R(el+ 62)

we can write rotation matrix R(®,) as

[ cosf, sinﬁﬂand RE.) |r cosB, sinB, |
) =

i
- -

R@,) . .
(-sinB;  cosB, -sinB,  cosH; |

[ cosB; sinB;] [ cosB, sinB,
R(®,) - R@,) i, M x - .
: |-sinB;  cosB, -sinfB,  cos6,

- - -

" cosBq-cosB, +sinB,-(-sinB,) cosB;-sinB, +sinB,-cosO, ]
|
|

-sinf;-cosf, +cosB-(-sinB,) -sinB,-sin6, +cosB,-cosh,

rCOS(9]+92) sin(81+82)
| -sin(8, +6,) cos(6,+6,)




Basic 3D transformations

3-D Transformation is the process of manipulating the view of a three-D object with

respect to its original position by modifying its physical attributes through various

methods of transformation like Translation, Scaling, Rotation, Shear , Reflection
etc.
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3D Translation

Translation vector or Shift vector = (T,, T,, T,)
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Translation vector or Shift vector = (T,, T,, T,)

><new = ><old "5 Tx
Ynew B Yold T Ty
Znew = ZoId T Tz

P’=T.P
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Given a 3D object with coordinate points A(0, 3, 1), B(3, 3, 2), C(3, 0, 0), D(0, 0, 0).
Apply the translation with the distance 1 towards X axis, 1 towards Y axis and 2 toward
Z axis and obtain the new coordinates of the object.

Translation vector = (T,, T, T,) = (1, 1,2)  For Coordinates B(3, 3, 2)

For Coordinates A(O, 3, 1) X =X g+ T, =3+1=4

new 0 X
XneW:XoId+Tx:O+1:1 Ynew:YoId+Ty:3+1:4
Ynew:YoId'l'Ty::S”'I':I-:4 Znew:ZOId+Tz:2+2:4
Znew:ZoId'I'Tz:1"'2:3

New coordinates of A =(1,4,3)  New coordinates of B = (4,4,4)
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For Coordinates C(3, 0, 0)

For Coordinates D(0, 0, 0)

Xnew:Xold-I_Tx:?)'I_1:4 XneW:XOId+TX:O+1:1
Y new = Yord ol =IO MRS R =0 +1=1
Znew:ZoId'I_Tz:O-l_zz2 ZneW:ZOId+TZ:O+2:2

New coordinates of C = (4, 1, 2).  New coordinates of D=(1,1,2)
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3D Rotation

3D Rotation is a process of rotating an object with respect to an angle in a three-
dimensional plane .
In 3 dimensions, there are 3 possible types of rotation-

X-axis Rotation
Y -axis Rotation
Z-axIs Rotation
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X-Axis Rotation

Xnew x ><oId
Yoiew = Yoiq -€080 — Z 4 .sin@
Zoow=Yoq-SINO +7Z 4 .cosO
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Y-Axis Rotation

Xiew = Zoig - SINO + X4 . cosO
Ynew a Yold
Zoow = Zog €050 — X4 . SIn0O
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Z-Axis Rotation

Xew = Xo1g -€080 — Y14 -S1N0
Y new = Xoig -S1N0 + Y14 .cOSO
Znew - ZoId
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Given a homogeneous point (1, 2, 3). Apply rotation 90 degree towards X, Y and Z
axis and find out the new coordinate points.

X-Axis Rotation

Xoew = Xoig =1
Yew = Yorg X €080 —Z ,; x sin® = 2 x c0s90° — 3 xsin90°=2x0-3x1=-3
4 —Yo|dxsm9+Zo|dxcosﬂ 2 xsin90° + 3xc0s90°=2x1+3x0=2

new

New coordinates after rotation = (1,-3,2)
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Y-Axis Rotation

Xnew = Zoig X 8in0 + X,y x cosO =3 x sin90° + 1 x c0s90° =3 x1+1x0=3
Ynew = Yold = 2
Zoow = Yog X080 — X ,;xsin@=2xcos90°—1xsin90°=2x0-1x1=-1

New coordinates after rotation = (3,2,-1)

Z-Axis Rotation

Xuew = Koig X €080 — Y g xsin@ =1 x c0s90° -2 xsin90°=1x0-2x1=-2
Yn = Xoig X Sin@ + Y,y xcosO0=1xsin90° +2xcos90°=1x1+2x0=1
ZneW:ZoId:3

New coordinates after rotation = (-2,1,3) NAMITHA RAMACHANDRAN



General 3D Rotation

When an object is to be rotated about an axis that is parallel to one of
the coordinate axes

Translate the object so that the rotation axis coincides with the parallel
coordinate axis.

Perform the specified rotation about that axis.

Translate the object so that the rotation axis is moved back to its
original position.

P’:T'l . R(O) T.P NAMITHA RAMACHANDRAN



When the object is to be rotated about an axis that is not parallel to one
the coordinate axes

Translate the object so that the rotation axis passes through the
coordinate origin.

Rotate the object so that the axis of rotation coincides with one of the
coordinate axes.

Perform the specified rotation about that coordinate axis.

Apply inverse rotation to bring the rotation axis back to its original
orientation.

Apply the inverse translation to bring the rotation axis back to its
original position.



3D Scaling

Scaling is a process of modifying or altering the size of objects.

Scaling may be used to increase or reduce the size of object.

Scaling subjects the coordinate points of the original object to change.

Scaling factor determines whether the object size is to be increased or reduced.
If scaling factor > 1, then the object size is increased.

If scaling factor < 1, then the object size is reduced.

Xnew = XoId X Sx
Ynew = YoId X Sy
Znew S ZoId X Sz




Given a 3D object with coordinate points A(0, 3, 3), B(3, 3, 6), C(3, 0, 1), D(0, 0, 0).
Apply the scaling parameter 2 towards X axis, 3 towards Y axis and 3 towards Z axis

and obtain the new coordinates of the object.
For Coordinates B(3, 3, 6)

Scaling factor along X axis = 2
Scaling factor along Y axis = 3
Scaling factor along Z axis = 3
For Coordinates A(0, 3, 3)
Xnew = Xoig XS, =0x2=0
Y rew = Yoid Ko RS E
Z o = Lo XS, —I0T GG

New coordinates of corner A after
scaling = (0, 9, 9).

Kiow = Xgig XS, =3X2=6
e (g i>y = S X3 =9
Zoow=Zog XS,=6x3=18

New coordinates of corner B after
scaling = (6, 9, 18).
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For Coordinates C(3, 0, 1)

Xnew = Xoig XS, =3X2=6

new
Y new = Yoa XSy —IDBGE=0
Z o =ZgXS,=1x3=3

New coordinates of corner C after
scaling = (6, 0, 3).

Coordinates D(0, 0, 0)
Xeew = Koig XS, =0x2=0
M X S, = 0Xx 3=0
e XS, =0x3=0
New coordinates of corner D after
scaling = (0, 0, 0).
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Scaling with respect to a selected fixed point(xf,yf,zf)

Translate the fixed point to the origin.
Scale the object relative to the coordinate origin .
Translate the fixed point back to its original position.

T(Xf1yf’2f) 'S(SX’Sy1SZ) 'T(_Xf!_yf’_Zf): Sx 0 O (1-sx)xf
0 sy 0 (L-sy)yf
0 0 sz (1-sz)zf
0O 0 O 1
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3D Reflection

Reflection is a kind of rotation where the angle of rotation is 180 degree.
The reflected object is always formed on the other side of the mirror.
The size of the reflected object is the same as the original object's size.

Reflection Relative to XY Plane:

Reflection along with xyplane




Reflection Relative to YZ Plane

Xnew = 'Xold
Ynew = Yold
Znew = Zold
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Reflection Relative to XZ Plane

Xnew = Xold
Ynew ) 'Yold
Znew = Zold
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Given a 3D triangle with coordinate points A(3, 4, 1), B(6, 4, 2), C(5, 6, 3). Apply the
reflection on the XY plane and find out the new coordinates of the object.

For Coordinates A(3, 4, 1) For Coordinates B(6, 4, 2)
Xnew o x0|d S 3 Xnew = XOld - 6
Ynew B Y0|d = 4 Ynew = Y0|d - 4
ZHEW = ZO|d 1 Znew = ZOld 2
New coordinates of corner A = (3, 4, -1). New coordinates of corner B = (6, 4, -2).
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For Coordinates B(6, 4, 2)

Kiew = Xy =6
Y e ==
Znew . ZoId =-2

New coordinates of corner B after reflection = (6, 4, -2).

For Coordinates C(5, 6, 3)

Xnew = XoId =3
Yoew= Yo =6
Znew = ZoId =-3

New coordinates of corner C = (5, 6, -3). NAMITHA RAMACHANDRAN



3D Shear

In a three dimensional plane, the object shape can be changed along the X
direction, Y direction as well as Z direction.

So, there are three versions of shearing-
Shearing in X Axis-

xﬁwv:)KMd
Ynew = YoId i Shy X XoId
Zpew = Zoig T Sh; X Xy

new

3D Shearing Matrix

(In X axis)
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Shearing in Y AxXis-

Xnew = XoId s th X YoId
Ynew =5 YoId
Znew = ZoId + Shz X YoId

3D Shearing Matrix

(In Y axis)
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Shearing in Z AXis-

Xnew 5 Xold + th X ZoId
Y new = Yolder Sl X2
Znew - Zold

3D Shearing Matrix

(In Z axis)
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